Click here for Myspace Layouts

Sabtu, 03 November 2012

REAKSI ASAM BASA PADA SENYAWA ORGANIK 

REAKSI ASAM BASA PADA ASAM KARBOKSILAT.

Asam organik yang paling penting adalah asam-asam karboksilat. Gugus fungsinya adalah gugus karboksil, kependekan dari dua bagian yaitu gugus karbonil dan hidroksil. Rumus asam karboksilat dapat dipanjang dan atau dipendekkan seperti :

RCOOH ATAU RCO2H

Dalam kimia organik, turunan asam karboksilat adalah kelompok senyawa organik yang memiliki gugus karbonil dan memiliki sebuah atom elektronegatif (oksigen, nitrogen atau halogen yang terikat pada atom karbon karbonil. Turunan senyawa karboksilat berbeda dengan keton dan aldehida yang memiliki gugus karbonil tapi tidak terikat dengan atom elektronegatif. Keberadaan atom elektronegatif ini menyebabkan perubahan signifikan pada reaktivitas senyawa ini. Kelompok-kelompok senyawa yang termasuk turunan asam karboksilat adalah:

* Asam karboksilat

* Ester
* Amida
* Asil halida
* Anhidrida asam


 1. Rumus Umum
Asam alkanoat atau asam karboksilat merupakan golongan senyawa karbon yang
mempunyai gugus fungsional –COOH terikat langsung pada gugus alkil, sehingga rumus
umum asam alkanoat adalah : R-COOH

     2. Tata Nama
Penamaan senyawa-senyawa asam alkanoat atau asam karboksilat juga ada dua cara
yaitu :
1) Menurut IUPAC : mengikuti nama alkananya dengan menambahkan nama asam di
depannya dan mengganti akhiran “ ana “ pada alkana dengan akiran “ anoat “ pada
asam Alkanoat.
2) Menurut Trivial, penamaan yang didasarkan dari sumber penghasilnya.

Contoh:
Tabel PENAMAAN SENYAWA ASAM KARBOKSILAT
Rumus Struktur
Nama IUPAC
Nama Trivial
Sumber
HCOOH
CH3COOH
C2H5COOH
CH3(CH2)COOH
CH3(CH2)3COOH
CH3(CH2)4COOH
Asam Metanoat
Asam Etanoat
Asam Propanoat
Asam Butanoat
Asam Rentanoat
Asam Heksanoat
Asam Format
Asam Asetat
Asam Propionat
Asam Butirat
Asam Valerat
Asam Kaproat
Semut (Formica)
Cuka (Asetum)
Susu (Protospion)
Mentega (Butyrum)
Akar Valerian (Valere)
Domba (Caper)


Untuk senyawa-senyawa asam alkanoat yang mempunyai rumus struktur bercabang
aturan penamaan IUPAC adalah sebagai berikut :
1) Tentukan rantai utama dengan memilih deretan C paling panjang dan mengandung
gugus fungsi –COOH, kemudian diberi nama seperti pada tabel di atas.
2) Penomoran atom C dimulai dari atom C gugus fungsi, sedang aturan selanjutnya sama
dengan yang berlaku pada senyawa-senyawa hidrokarbon.
Contoh :
a) CH3–CH2–CH (CH3)–COOH Asam 2, metil Butanoat

3. Sifat – Sifat Asam Karboksilat
Secara umum senyawa-senyawa asam alkanoat atau asam karboksilat mempunyai
sifat-sifat sebagai berikut :
1) a) Asam alkanoat yang mengandung C1 sampai C4 berbentuk cairan encer dan larut
sempurna dalam air
b) Asam alkanoat dengan atom C5 sampai C9 berbentuk cairan kental dan sedikit larut
dalam air
c) Asam alkanoat suku tinggi dengan C10 atau lebih berbentuk padatan yang sukat
larut dalam air.
2) Titik didih asam alkanoat lebih tinggi dibandingkan titik didih alkohol yang memiliki
jumlah atom C yang sama.
3) Asam alkanoat pada umumnya merupakan asam lemah. Semakin panjang rantai
karbonnya semakin lemah sifat asamnya.
Contoh :
HCOOH Ka = 1,0 . 10–4

CH3COOH Ka = 1,8 . 10–5

CH3CH2COOH Ka = 1,3 . 10–5

4) Asam alkanoat dapat bereaksi dengan basa menghasilkan garam. Reaksi ini disebut
reaksi penetralan.
a) CH3COOH + NaOH -------------> CH3COONa + H2O
Asam Etanoat Natrium Etanoat

5) Asam alkanoat dapat bereaksi dengan alkohol menghasilkan senyawa ester. Reaksi ini
dikenal dengan reaksi esterifikasi.
a) CH3COOH + CH3–OH ------------------> CH3COOHCH3 + H2O
Asam Etanoat Metanol Metil Etanoat

b) CH3CH2COOH + CH3CH2–OH -------------> CH3CH2COOCH3 + H2O
Asam Propanoat Etanol Etil Propanoat

4. Kegunaan Asam Alkanoat
Penggunaan asam alkanoat dalam kehidupan sehari-hari antara lain :
1) Asam format (asam metanoat) yang juga dikenal asam semut merupakan cairan tak
berwarna dengan bau yang merangsang. Biasanya digunakan untuk :
a) menggumpalkan lateks (getah karet)
b) obat pembasmi hama
2) Asam asetat atau asam etanoat yang dalam kehidupan sehari-hari dikenal dengan nama
asam cuka. Asam cuka banyak digunakan sebagai pengawet makanan, dan penambah
rasa makanan (baksa dan soto)
3) Asam sitrat biasanya digunakan untuk pengawet buah dalam kaleng
4) Asam stearat, asam ini berbentuk padat, berwarna putih. Dalam kehidupan sehari-hari
terutama digunakan untuk membuat lilin.

5. REAKSI ASAM KARBOKSILAT
Asam karboksilat adalah golongan senyawa organik yang memiliki rumus umum R-COOH. Beberapa reaksi yang dapat terjadi pada asam karoksilat antara lain:

A. Reaksi Penetralan 
 
Asam karboksilat bereaksi dengan basa membentuk garam dan air.
Garam natrium atau kalium dari asam karboksilat suku tinggi dikenal sebagai sabun. Sabun natrium disebut sabun keras, sedangkan sabun kalium disebut sabun lunak. Sebagai contoh, yaitu natrium stearat (NaC17H35COO) dan kalium stearat (KC17H35COO).
Asam alkanoat tergolong asam lemah, semakin panjang rantai alkilnya, semakin lemah asamnya. Jadi, asam alkanoat yang paling kuat adalah asam format, HCOOH. Asam format mempunyai Ka=1,8x10-4. Oleh karena itu, larutan garam natrium dan kaliumnya mengalami hidrolisis parsial dan bersifat basa.

B. Reaksi Pengesteran
 
Asam karboksilat bereaksi dengan alkohol membentuk ester. Reaksi ini disebut esterifikasi (pengesteran). 


 C. Reaksi substitusi

  a. reaksi dengan halida (PX3, PX5 dan SOX2) akan menghasilkan suatu asilhalida (Bagan 12.56).
  b. reaksi dengan alkohol akan menghasilkan suatu ester dan H2O.

 D. Reaksi Reduksi

       Reaksi Reduksi menggunakan katalis CaAlPH4 akan menghasilkan alkohol primer.

 E. Reaksi Dehidrasi
    Reaksi dehidrasi (penghilangan molekul H2O) akan        menghasilkan anhidrida asam karboksilat, 

lihat Gambar 12.57.
bagan 12.55
Bagan 12.55. Reaksi penyabunan
bagan 12.56
Bagan 12.56. Reaksi substitusi OH dengan halida
bagan 12.57
Bagan 12.57. Dehidrasi asam karboksilat menghasilkan anhidrida asam karboksilat




 #Permasalahan : 
Suatu molekul asam karboksilat mengandung gugusan –OH dan dengan sendirinya dapat membentuk ikatan hidrogen dengan air dan asam karboksilat juga membentuk ikatan hidrogen dengan molekul asam karboksilat lainya dimana terjadi dua ikatan hidrogen antara dua gugusan karboksil.yang ingin saya tanyakan bagaimana proses terbentuknya  ikatan hidrogen dalam asam karboksilat pada penjelasan diatas?

Jumat, 26 Oktober 2012


REAKSI-REAKSI OKSIDATIF SENYAWA HIDROKARBON 

1. OKSIDASI ALKANA

Alkana sukar dioksidasi oleh oksidator lemah atau agak kuat seperti KMNO4, tetapi mudah dioksidasi oleh oksigen dari udara bila dibakar. Oksidasi yang cepat dengan oksingen yang akan mengeluarkan panas dan cahaya disebut pembakaran
Hasil oksidasi sempurna dari alkana adalah gas karbon dioksida dan sejumlah air. Sebelum terbentuknya produk akhir oksidasi berupa CO2 dan H2 O, terlebih dahulu terbentuk alkohol, aldehid dan karboksilat.
Alkana terbakar dalam keadaan oksigen berlebihan dan reaksi ini menghasilkan sejumlah kalor (eksoterm)
CH4 + 2O2 → CO­2 + 2H2 + 212,8 kkal/mol
C4H10 + 2O2 → CO­2 + H2O + 688,0 kkal/mol
Reaksi pembakaran ini merupakan dasar penggunaan hidrokarbon sebagai penghasil kalor (gas alam dan minyak pemanas) dan tenaga (bensin), jika oksigen tidak mencukupi untuk berlangsungnya reaksi yang sempurna, maka pembakaran tidak sempurna terjadi. Dalam hal ini, karbon pada hidrokarbon teroksidasi hanya sampai pada tingkat karbon monoksida atau bahkan hanya sampai karbon saja.
2CH4 + 3O2 → 2CO­ + 4H2O
CH4 + O2 → C + 2H2O
Penumpukan karbon monoksida pada knalpot dan karbon pada piston mesin kendaraan bermotor adalah contoh dampak dari pembakaran yang tidak sempurna. Reaksi pembakaran tak sempurna kadang-kadang dilakukan, misalnya dalam pembuatan carbon black, misalnya jelaga untuk pewarna pada tinta.Semua alkana dapat bereaksi dengan oksigen pada reaksi pembakaran, meskipun pada alkana-alkana suku tinggi reaksi akan semakin sulit untuk dilakukan seiring dengan jumlah atom karbon yang bertambah. Rumus umum pembakaran adalah:
CnH2n+2 + (1.5n+0.5)O2 → (n+1)H2O + nCO2
CH4   +   2O2           CO2 +  2H2O          
Ketika jumlah oksigen tidak cukup banyak, maka dapat juga membentuk karbon monoksida, seperti pada reaksi berikut ini:
CnH(2n+2) + nO2 → (n+1)H2O + nCO
CH4 + 1.5O2 → CO + 2H2O

2. OKSIDASI ALKENA

Oksidasi Alkena Dengan Permanganat
      Alkena lebih mudah dioksidasi oleh pereaksi yang bersifat oksidator melalui proses penyerapan electron p pada ikatan ganda dua. Ion permanganat yang berwarna unggu, Setelah reaksi berlangsung akan berubah menjadi endapan coklat MnO2. Perubahan warna yang terjadi dalam reaksi ini sering digunakan untuk membedakan alkena dari senyawa-senyawa kelompok alkana dalam sample hidrokarbon seperti minyak bumi.
a.   Reaksi tanpa pemaksapisahan akan membentuk diol atau epoksi
Contoh: H2C=CH-CH3 +[O]                  H2COH-HCOH-CH3
atau  H2C-CH-CH3
b. Reaksi pemaksapisahan akan membentuk aldehid (jika oksidator lemah), keton dan asam karbosilat (jika oksidator kuat).
Contoh: H2C=CH-CH3 + [O]              H2C=O + O=CH-CH3
 OKSIDASI ALKENA DENGAN KALIUM PERMANGANAT

Apabila alkena dioksidasi, maka kemungkinan produk yang dihasilkan adalah alkohol, aldehid, keton, atau asam karboksilat. Semua tergantung suhu dan suasana serta struktur alkena sendiri. Terdapat dua suasana yang memberikan produk yang berbeda. Dalam suasana basa, apabila alkena dioksidasi, akan membentuk diol. Sedangkan dalam suasana asam, akan menghasilkan 2 zat yang terpisah karena terjadi pemutusan ikatan. Biasanya berupa aldehid.
Sedangkan untuk KMnO4 (Berwarna Ungu) sendiri, dalam suasana basa akan membentuk endapan Mangan(IV) oksida (MnO2) berwarna coklat. Sedangkan dalam suasana asam akan membentuk larutan Mn2+ yang tidak berwarna.
Berikut contoh – contoh reaksi:

Apabila dalam soal tidak diberitahukan suhunya, maka soal tersebut diasumsikan dalam keadaan dingin sehingga yang terbentuk adalah diol.


Oksidasi dengan Ozonolisis
Untuk reaksi ozonolisis, pasti akan terjadi pemutusan rantai. Reaksi ini dibagi menjadi 2, yaitu ozonolisis reduktif dan oksidatif.
Contoh reaksi:

Dari gambar diatas, dapat kita simpulkan untuk reaksi ozonolisis reduktif (Zn, H2O) akan menghasilkan produk hingga tingkat karbonil saja (Aldehid dan Keton) sedangkan untuk reaksi ozonolisis oksidatif (H2O2) akan menghasilkan produk hingga tingkat asam karboksilat jika memungkinkan.
Sebagai tambahan, perlu anda ketahui bahwa ozon adalah zat reaktif yang bersifat karsogenik.



#Permasalahan 

Apabila Alkena di oksidasi Terdapat dua suasana yang memberikan produk yang berbeda. Dalam suasana basa, apabila alkena dioksidasi, akan membentuk diol. Sedangkan dalam suasana asam, akan menghasilkan 2 zat yang terpisah karena terjadi pemutusan ikatan. 
pertanyaan saya:

Bagaimana proses mekanisme terjadinya jika dalam suasana basa,  alkena dioksidasi  dapat membentuk diol, sedangkan jika dalam suasana asam apabila alkena dioksidasi terjadi pemutusan ikatan?



Rabu, 17 Oktober 2012

REAKSI-REAKSI PADA ALKANA

 Reaksi- reaksi pada Alkana

1. Oksidasi
Alkana sukar dioksidasi oleh oksidator lemah atau agak kuat seperti KMNO4, tetapi mudah dioksidasi oleh oksigen dari udara bila dibakar. Oksidasi yang cepat dengan oksingen yang akan mengeluarkan panas dan cahaya disebut pembakaran atau combustion
Hasil oksidasi sempurna dari alkana adalah gas karbon dioksida dan sejumlah air. Sebelum terbentuknya produk akhir oksidasi berupa CO2 dan H2 O, terlebih dahulu terbentuk alkohol, aldehid dan karboksilat.
Alkana terbakar dalam keadaan oksigen berlebihan dan reaksi ini menghasilkan sejumlah kalor (eksoterm)
CH4 + 2O2 → CO­2 + 2H2 + 212,8 kkal/mol
C4H10 + 2O2 → CO­2 + H2O + 688,0 kkal/mol
Reaksi pembakaran ini merupakan dasar penggunaan hidrokarbon sebagai penghasil kalor (gas alam dan minyak pemanas) dan tenaga (bensin), jika oksigen tidak mencukupi untuk berlangsungnya reaksi yang sempurna, maka pembakaran tidak sempurna terjadi. Dalam hal ini, karbon pada hidrokarbon teroksidasi hanya sampai pada tingkat karbon monoksida atau bahkan hanya sampai karbon saja.
2CH4 + 3O2 → 2CO­ + 4H2O
CH4 + O2 → C + 2H2O
Penumpukan karbon monoksida pada knalpot dan karbon pada piston mesin kendaraan bermotor adalah contoh dampak dari pembakaran yang tidak sempurna. Reaksi pembakaran tak sempurna kadang-kadang dilakukan, misalnya dalam pembuatan carbon black, misalnya jelaga untuk pewarna pada tinta.


2. Halogenasi
Reaksi dari alkana dengan unsur-unsur halogen disebut reaksi halogenasi. Reaksi ini akan menghasilkan senyawa alkil halida, dimana atom hidrogen dari alkana akan disubstitusi oleh halogen sehingga reaksi ini bisa disebut reaksi substitusi.
Halogenasi biasanya menggunakan klor dan brom sehingga disebut juga klorinasi dan brominasi. Halongen lain, fluor bereaksi secara eksplosif dengan senyawa organik sedangkan iodium tak cukup reaktif untuk dapat bereaksi dengan alkana.
Laju pergantian atom H sebagai berikut H3 > H2 > H1. Kereaktifan halogen dalam mensubtitusi H yakni fluorin > klorin > brom > iodin.
Reaksi antara alkana dengan fluorin menimbulkan ledakan (eksplosif) bahkan pada suhu dingin dan ruang gelap.
clip_image003
Jika campuran alkana dan gas klor disimpan pada suhu rendah dalam keadaan gelap, reaksi tidak berlangsung. Jika campuran tersebut dalam kondisi suhu tinggi atau di bawah sinar UV, maka akan terjadi reaksi yang eksoterm. Reaksi kimia dengan bantuan cahaya disebut reaksi fitokimia.
Dalam reaksi klorinasi, satu atau lebih bahkan semua atom hidrogen diganti oleh atom halogen. Contoh reaksi halogen dan klorinasi secara umum digambarkan sebagai berikut:
clip_image005


3. Sulfonasi Alkana
Sulfonasi merupakan reaksi antara suatu senyawa dengan asam sulfat. Reaksi antara alkana dengan asam sulfat berasap (oleum) menghasilkan asam alkana sulfonat. dalam reaksi terjadi pergantian satu atom H oleh gugus –SO3H. Laju reaksi sulfonasi H3 > H2 > H1.
Contoh
clip_image019
4. Nitrasi
Reaksi nitrasi analog dengan sulfonasi, berjalan dengan mudah jika terdapat karbon tertier, jika alkananya rantai lurus reaksinya sangat lambat.
clip_image021

5. Pirolisis (Cracking)
Proses pirolisis atau cracking adalah proses pemecahan alkana dengan jalan pemanasan pada temperatur tinggi, sekitar 10000 C tanpa oksigen, akan dihasilkan alkana dengan rantai karbon lebih pendek
clip_image023
Proses pirolisis dari metana secara industri dipergunakan dalam pembuatan karbon-black. Proses pirolisa juga dipergunakan untuk memperbaiki struktur bahan bakar minyak, yaitu, berfungsi untuk menaikkan bilangan oktannya dan mendapatkan senyawa alkena yang dipergunakan sebagai pembuatan plastik. Cracking biasanya dilakukan pada tekanan tinggi dengan penambahan suatu katalis (tanah liat aluminium silikat).

PERMASALAHAN

dari buku yang saya baca, pada persamaan umum halogenasi terdapat katalis nya cahaya atau kalor,  mengapa di perlukan cahaya atau kalor sebagai katalisnya? Dan pada persamaan
 clip_image005


menyatakan reaksi keseluruhan halogenasi, persamaan tersebut menjelaskan struktur reaktan dan produk, dan menunjukkkan kondisi reaksi yg diperlukan atau katalis. Akan tetapi, persamaan tersebut tidak begitu menjelaskan secara lebih luas bagaimana tepatnya produk terbentuk dari reaktan, jadi yang saya ingin tanyakan lagi bagaimana mekanisme terjadinya produk tersebut terbentuk dari reaktan? 

cat : sebenarnya pada persamaan umum reaksi Halogenasi diatas pada persamaan tersebut terdapat katalisnya tepat pada tanda panahnya yaitu cahaya atau kalor, tp krna gambar dan pengeditannya yg susah jadi tidak di buat. trims